
Selective Preemption Strategies for Parallel Job Scheduling

Rajkumar Kettimuthu Vijay Subramani Srividya Srinivasan Thiagaraja Gopalsamy

D K Panda P Sadayappan

Department of Computer and Information Science
The Ohio State University�

kettimuthu.1,subramani.4,srinivasan.39,gopalsamy.1,panda.2,sadayappan.1 � @osu.edu

Abstract

Although theoretical results have been established regarding the utility of preemptive scheduling in reducing average job
turnaround time, job suspension/restart is not much used in practice at supercomputer centers for parallel job scheduling.
A number of questions remain unanswered regarding the practical utility of preemptive scheduling. We explore this issue
through a simulation-based study, using real job logs from supercomputer centers. We develop a tunable selective-suspension
strategy, and demonstrate its effectiveness. We also present new insights into the effect of preemptive scheduling on different
job classes and deal with the impact of suspensions on worst-case response time. Further, we analyze the performance of the
proposed schemes under different load conditions.

1 Introduction

Although theoretical results have been established on the effectiveness of preemptive scheduling strategies in reducing
average job turnaround time [8], [9], [10], [11], [30] preemptive scheduling is not currently used for scheduling parallel
jobs at supercomputer centers. Compared to the large number of studies that have investigated non-preemptive scheduling
of parallel jobs [2], [7], [13], [17], [18], [21], [22], [24], [26], [29], [34], [35], [37], [38], [39], [41] little research has been
reported on evaluation of preemptive scheduling strategies using real job logs [4], [5], [23], [27]. The basic idea behind
preemptive scheduling is simple: if a long running job is temporarily suspended and a waiting short job is allowed to run to
completion first, the wait time of the short job is significantly decreased, without much fractional increase in the turnaround
time of the long job. Consider a long job with runtime ��� . After time t, let a short job arrives with runtime ��� . If the short job
were run after completion of the long job, the average job turnaround time would be �	��
���	��
�������������� , or �������	���������� . Instead,
if the long job were suspended when the short job arrived, the turnaround times of the short and long jobs would be ��� and� ���������! respectively, giving an average of ����� �"
� . The average turnaround time with suspension is less if �#�%$&���('*) , i.e.
the remaining runtime of the running job is greater than the runtime of the waiting job.

The suspension criterion has to be chosen carefully to ensure freedom from starvation. Also, the suspension scheme should
bring down the average turnaround times without increasing the worst case turnaround times. Even though theoretical results
[8], [9], [10], [11], [30] have established that preemption improves the average turnaround time, it is important to perform
evaluations of preemptive scheduling schemes using realistic job mixes derived from actual job logs from supercomputer
centers, to understand the effect of suspension on various categories of jobs. The primary contributions of this work are:

+ The development of a selective-suspension strategy for preemptive scheduling of parallel jobs, and

+ Characterization of the significant variability in the average job turnaround time for different job categories, and

+ The study of the impact of suspension on the worst case turnaround times of various categories and development of a
tunable scheme to improve worst case turnaround times.

The paper is organized as follows. Section 2 provides background on parallel job scheduling and discusses prior work on
preemptive job scheduling. Section 3 characterizes the workload used for the simulations. Section 4 presents the proposed
selective preemption strategies and evaluates their performance under the assumption of accurate estimation of job run times.
Section 5 studies the impact of inaccuracies in user estimates of run time on the selective preemption strategies. It also
models the overhead for job suspension and restart and evaluates the proposed schemes in the presence of overhead. The
performance of the selective preemption strategies under different load conditions is presented in Section 6. Section 7
summarizes the results of this work.

2 Background and Related Work

Scheduling of parallel jobs is usually viewed in terms of a 2D chart with time along one axis and the number of processors
along the other axis. Each job can be thought of as a rectangle whose width is the user estimated run time and height is the
number of processors requested. Parallel job scheduling strategies have been widely studied in the past [1], [3], [6], [28],
[19], [20], [33], [36]. The simplest way to schedule jobs is to use the First-Come-First-Served (FCFS) policy. This approach
suffers from low system utilization due to fragmentation of the available processors. Consider a scenario where a few jobs
are running in the system and many processor are idle, but the next queued job requires all the processors in the system.
An FCFS scheduler would leave the currently free processors idle, even if there are waiting queued jobs requiring only a
few processors. Some solutions to this problem are to use dynamic partitioning [25] or gang scheduling [14]. An alternate
approach to improving system utilization is backfilling.

2.1 Backfilling

Backfilling was developed for the IBM SP1 parallel supercomputer as part of the Extensible Argonne Scheduling sYstem
(EASY) [24] and has been implemented in several production schedulers [16], [32]. Backfilling works by identifying “holes”
in the 2D schedule and moving forward smaller jobs that fit those holes. With backfilling, users are required to provide an
estimate of the length of the jobs submitted for execution. This information is used by the scheduler to predict when the next
queued job will be able to run. Thus, a scheduler can determine whether a job is sufficiently small to run without delaying
any previously reserved jobs.

It is desirable that a scheduler with backfilling support two conflicting goals. On the one hand, it is desirable to move as
many short jobs forward, in order to improve utilization and responsiveness. On the other hand, it is also important to avoid
starvation of large jobs, and in particular, to be able to predict when each job will run. There are two common variants to
backfilling - conservative and aggressive (EASY) that attempt to balance these goals in different ways.

2.1.1 Conservative Backfilling

With conservative backfill, every job is given a reservation (start time guarantee) when it enters the system. A smaller job is
allowed to backfill only if it does not delay any previously queued job. Thus, when a new job arrives, the following allocation
procedure is executed by a conservative backfill scheduler. Based on the current knowledge of the system state, the scheduler
finds the earliest time at which a sufficient number of processors are available to run the job for a duration equal to the user
estimated run time. This is called the anchor point. Thus the anchor point of a job is the earliest time at which the job can
start without violating any previous commitments. The scheduler then updates the system state to reflect the allocation of
processors to this job starting from its anchor point. If the job’s anchor point is the current time, the job is started immediately.

An example is given in Figure 1. The first job in the queue does not have enough processors to run. So a reservation
is made for it at the anticipated termination time of the longer running job. Similarly, the second queued job is given a
reservation at the anticipated termination time of the first queued job. Although enough processors are available for the third
queued job to start immediately, it would delay the second job; therefore, the third job is given a reservation after the second
queued job’s anticipated termination time.

Thus in conservative backfill, jobs are assigned a start time when they are submitted, based on the current usage profile.
But they may actually be able to run sooner if previous jobs terminate earlier than expected. In this scenario, the original
schedule is compressed. This is done by releasing the existing reservations one by one, when a running job terminates, in the
order of increasing reservation start time guarantees and attempting backfill for the released job. If due to early termination of
some job, “holes” of the right size are created for a job, then it gets an earlier reservation. In the worst case, each released job
would be reinserted in the same position it held previously. With this scheme, there is no danger of starvation, as a reservation
is made for each job when it is submitted.

2

1

2

3

time

nodes

1

2

3
queued
jobs

running
jobs

Figure 1. Conservative Backfilling.

1

2 3

time

nodes

1

2

3
queued
jobs

running
jobs

backfill

Figure 2. Aggressive Backfilling.

3

2.1.2 Aggressive Backfilling

Conservative backfilling moves jobs forward only if they do not delay any previously queued job. Aggressive backfilling
takes a more aggressive approach, and allows jobs to skip ahead provided they do not delay the job at the head of the queue.
The objective is to improve the current utilization as much as possible, subject to some consideration for queue order. The
price is that execution guarantees cannot be made, because it is impossible to predict how much each job will be delayed in
the queue.

An aggressive backfill scheduler scans the queue of waiting jobs and allocates processors as requested. The scheduler
gives a reservation guarantee to the first job in the queue that does not have enough processors to start. This reservation is
given at the earliest time at which the required processors are expected to become free, based on the current system state.
The scheduler then attempts to backfill the other queued jobs. To be eligible for backfill, a job must require no more than the
currently available processors, and in addition it must satisfy either of two conditions that guarantee that it will not delay the
first job in the queue:

+ it must terminate by the time the first queued job is scheduled to commence, or

+ it must use no more nodes than that are free at the time the first queued job is scheduled to start.

Figure 2 shows an example.

2.2 Metrics

Some of the common metrics used to evaluate the performance of scheduling schemes are the average turnaround time
and the average bounded slowdown. We use these metrics for our studies. The bounded slowdown [15] of a job is defined as
follows:

���������
	������������������� �����
�)�) ��� 	 ��� ������� ���) ��� 	� "!$# &%'� ������� �(�) ��� 	� "!)# (1)

The threshold of 10 seconds is used to limit the influence of very short jobs on the metric.
preemptive scheduling aims at providing lower delay to short jobs relative to long jobs. Since long jobs have greater

tolerance to delays as compared to short jobs, our suspension criterion is based on the expansion factor (xfactor), which
increases rapidly for short jobs and gradually for long jobs.

*&+',.-"/�021 � �23 ,546/�/�46798 ��:<; /�467=,5/>8&?A@CBEDGFH467=8 &%.:I; /�4679,2/�8J?K@CBEDGFH467=8 (2)

2.3 Related Work

Although preemptive scheduling is universally used at the operating system level to multiplex processes on single-
processor systems and shared-memory multi-processors, it is rarely used in parallel job scheduling. A large number of
studies have addressed the problem of parallel job scheduling (see [15] for a survey of work on this topic), but most of them
address non-preemptive scheduling strategies. Further, most of the work on preemptive scheduling of parallel jobs considers
the jobs to be malleable [10], [27], [31], [40] i.e. the number of processors used to execute the job is permitted to vary
dynamically over time.

In practice, parallel jobs submitted to supercomputer centers are generally rigid, i.e. the number of processors used to
execute a job is fixed. Under this scenario, the various schemes proposed for a malleable job model are inapplicable. Very
few studies have addressed preemptive scheduling under a model of rigid jobs, where the preemption is “local”, i.e. the
suspended job must be restarted on exactly the same set of processors on which they were suspended.

In [5], a preemptive scheduling strategy called the “Immediate Service (IS)” scheme was evaluated for shared-memory
systems. With this scheme, each arriving job was given an immediate time-slice of 10 minutes, by suspending one or more
running jobs if needed. The selection of jobs for suspension was based on their instantaneous-xfactor, defined as (wait time +
total accumulated run time) / (total accumulated run time). Jobs with the lowest instantaneous-xfactor were suspended. The
IS strategy was shown to significantly decrease the average job slowdown for the traces simulated. A potential shortcoming
of the IS scheme is that its preemption decisions are not in any way reflective of the expected runtime of a job. The IS
scheme can be expected to provide significant improvement to the slowdown of aborted jobs in the trace. So it is unclear
how much, if any, of the improvement in slowdown was experienced by the jobs that completed normally. However, no
information was provided on how different job categories were affected. Chiang et al [4] examine the run-to-completion

4

policy with a suspension policy that allows a job to be suspended at most once. Both these approaches limit the number of
suspensions while we use a “suspension factor” to control the rate of suspensions without limiting the number of times a job
can be suspended. In [27], the design and implementation of a number of multiprocessor preemptive scheduling disciplines
are discussed. They study the effect of preemption under the models of rigid, migratable and malleable jobs. They conclude
that the preemption scheme that they propose may increase the response time for the model of rigid jobs.

So far, only very few simulation based studies have been done on preemption strategies for clusters. With no process
migration, the distributed memory systems impose an additional constraint that a suspended job should get the same set of
processors when it restarts. In this paper, we propose tunable suspension strategies for parallel job scheduling in environments
where process migration is not feasible.

3 Workload Characterization

We perform simulation studies using a locally developed simulator with workload logs from two different supercomputer
centers. Most supercomputer centers keep a trace file as a record of the scheduling events that occur in the system. This file
contains information about each job submitted and its actual execution. Typically the following data is recorded for each job

+ Name of job, user name, etc

+ Job submission time

+ Job resources requested, like memory, processors, etc

+ User estimated run time

+ Time when job started execution

+ Time when job finished execution

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min VS Seq VS N VS W VS VW

10min-1hr S Seq S N S W S VW
1hr-8hr L Seq L N L W L VW

� 8hr VL Seq VL N VL W VL VW

Table 1. Job categorization criteria

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 14% 8% 13% 9%

10min-1hr 18% 4% 6% 2%
1hr-8hr 6% 3% 9% 2%

� 8hr 2% 2% 1% 1%

Table 2. Job distribution by category - CTC Trace

From the collection of workload logs available from Feitelson’s archive [12], subsets of the CTC workload trace, the
SDSC workload trace and the KTH workload trace were used to evaluate the various schemes. The CTC trace was logged
from a 430 node IBM SP2 system at the Cornell Theory Center, the SDSC trace from a 128 node IBM SP2 system at the
San Diego Supercomputer Center and the KTH trace from a 100 node IBM SP2 system at the Swedish Royal Institute of
Technology. The other traces did not contain user run time estimates. We observed similar performance trends with all the
three traces. In order to minimize the number of graphs, we report the performance results for CTC and SDSC traces alone.
This selection is purely arbitrary.

5

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 8% 29% 9% 4%

10min-1hr 2% 8% 5% 3%
1hr-8hr 8% 5% 6% 1%

� 8hr 3% 5% 3% 1%

Table 3. Job distribution by category - SDSC Trace

Although it is known that user estimates are quite inaccurate in practice, as explained above, we first studied the effect of
preemptive scheduling under the idealized assumption of accurate estimation, before studying the effect of inaccuracies in
user estimates of job run time. Also, we first studied the impact of preemption under the assumption that the overhead for job
suspension and restart were negligible and then studied the influence of the overhead.

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 2.6 4.76 13.01 34.07

10min-1hr 1.26 1.76 3.04 7.14
1hr-8hr 1.13 1.43 1.88 1.63

� 8hr 1.03 1.05 1.09 1.15

Table 4. Average slowdown for various categories with non-preemptive scheduling - CTC Trace

1 Proc 2-8 Procs 9-32 Procs � 32 Procs
0-10min 2.53 14.41 37.78 113.31

10min-1hr 1.15 2.43 4.83 15.56
1hr-8hr 1.19 1.24 1.96 2.79

� 8hr 1.03 1.09 1.18 1.43

Table 5. Average slowdown for various categories with non-preemptive scheduling - SDSC Trace

Any analysis that is based only on the average slowdown or turnaround time of all jobs in the system cannot provide
insights into the variability within different job categories. Therefore in our discussion, we classify the jobs into various
categories based on the runtime and the number of processors requested, and analyze the slowdown and turnaround time for
each category.

To analyze the performance of jobs of different sizes and lengths, jobs were classified into 16 categories: considering four
partitions for run time - Very Short (VS), Short (S), Long (L) and Very Long (VL) and four partitions for the number of
processors requested - Sequential (Seq), Narrow (N), Wide (W) and Very Wide (VW). The criteria used for job classification
are shown in Table 1. The distribution of jobs in the trace, corresponding to the sixteen categories is given in Tables 2 and 3.

Tables 4 and 5 show the average slowdowns for the different job categories under a non-preemptive aggressive backfilling
strategy. The overall slowdown for the CTC trace was 3.58, and for the SDSC trace was 14.13. Even though the overall
slowdowns are low, from the tables, it can be observed that some of the Very Short categories have slowdowns as high as 34
(CTC trace) and 113 (SDSC trace). Preemptive strategies aim at reducing the high average slowdowns for the short categories
without significant degradation to long jobs.

4 Selective Suspension

We first propose a preemptive scheduling scheme, called the Selective Suspension (SS) scheme, where an idle job may
preempt a running job if its “suspension priority” is sufficiently higher than the running job. An idle job attempts to suspend

6

a collection of running jobs so as to obtain enough free processors. In order to control the rate of suspensions, a suspension
factor (SF) is used. This specifies the minimum ratio of the suspension threshold of a candidate idle job to the suspension
threshold of a running job for preemption to occur. The suspension threshold used is the xfactor of the job.

4.1 Theoretical Analysis

Task T1

Task T2

 L

 L

 N

 N

Figure 3. Two simultaneously submitted tasks T1 and T2 each require N processors and runtime L.

Let ��� and � � be two tasks submitted to the scheduler at the same time. Let both tasks be of the same length and require
the entire system for execution, with the system being free when the two tasks are submitted. Let ‘s’ be the suspension factor.
Before starting, both tasks have a suspension threshold of 1. The suspension threshold of a task remains constant when the
task executes and increases when the task waits. One of the two tasks, say ��� , will be started instantaneously. The other
task, say � � , will wait until its suspension threshold � � becomes ‘s’ times the threshold of ��� before it can preempt ��� . Now
� � will have to wait until its suspension threshold � � becomes ‘s’ times � � before it can preempt � � . Thus, execution of the
two tasks will alternate, controlled by the suspension factor. The optimal value for SF, to restrict the number of repeated
suspensions by two similar tasks arriving at the same time, can be obtained as follows:

Let ��� represent the suspension threshold of the waiting job and ��� represent the suspension threshold of the running job.
The condition for the first suspension is:
�	� = s
The preemption swaps the running job and the waiting job. So after the preemption, �
� = 1 and �	� = s.
The condition for the second suspension is:
� � = ��� �
� � = �

�
Similarly, the condition for the

� � � suspension is � � = �

.
The lowest value of s for which at most n suspensions occur is given by,
� � = �

 � � , when the running job completes.
When the running job completes,
�	� = ����� ��� ����� � ��� � �������� � ����� i.e. ��� = 2 ; since wait time of the waiting job = the run time of the running job

�
 � � = 2 and s =

������ �

Thus, if the number of suspensions is to be 0, then s = 2. For at most 1 suspension, we get s as
� �

. With s = 1, the number
of suspensions is very large, only bounded by the granularity of the preemption routine.

7

t t

 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2

 ……….

N
od

es
(N

)

Time

Figure 4. Execution pattern of the tasks T1 and T2 when SF = 1. ’t’ represents the minimum time
interval between two suspensions.

 T1 T2 T1 T2 T1 T2

N
od

es
(N

)

Time

Figure 5. Execution pattern of the tasks T1 and T2 when 1 < SF <
� �

.

L

 T1 T2 T1

N
od

es
(N

)

Time

Figure 6. Execution pattern of the tasks T1 and T2 when SF =
� �

.

8

With all jobs having equal length, any suspension factor greater than 2 will not result in any suspension and will be the
same as a suspension factor of 2. However, with jobs of varying length, the number of suspensions reduces with higher
suspension factors. Thus, in order to avoid thrashing and to reduce the number of suspensions, we use different suspension
factors between 1.5 and 5 in evaluating our schemes.

4.2 Preventing Starvation without Reservation Guarantees

With threshold-based suspension, an idle job can preempt a running job only if its threshold is at least SF times greater
than the threshold of the running job. All the idle jobs that are able to find the required number of processors by suspending
lower threshold running jobs are selected for execution by preempting the corresponding jobs. All backfilling scheduling
schemes use job reservations for one or more jobs at the head of the idle queue as a means of guaranteeing finite progress
and thereby avoiding starvation. But start time guarantees do not have much significance in a preemptive context. Even if we
give start time guarantees for the jobs in the idle queue, they are not guaranteed to run to completion. Since the SS strategy
uses the expected slowdown (xfactor) as the suspension threshold, there is an automatic guarantee of freedom from starvation
- ultimately any job’s expected slowdown factor will get large enough that it will be able to preempt some running job(s) and
begin execution. Thus, it is possible to use backfilling without the usual reservation guarantees. So, we remove guarantees
for all our preemption schemes.

Jobs in some categories inherently have a higher probability of waiting longer in the queue than jobs with comparable
xfactor from other job categories. For example, consider a VW job needing 300 processors, and a Sequential job in the
queue at the same time. If both jobs have the same xfactor, the probability that the Sequential job finds a running job to
suspend is higher than the probability that the VW job finds enough lower threshold running jobs to suspend. Therefore,
the average slowdown of the VW category will tend to be higher than the Sequential category. To redress this inequity, we
impose a restriction that the number of processors requested by a suspending job should be at least half of the number of
nodes requested by the job that it suspends, thereby preventing the wide jobs from being suspended by the narrow jobs. The
scheduler periodically (after every minute) invokes the preemption routine.

4.3 Algorithm

Let � � be the suspension threshold for a task) � which requests
�
� processors. Let � � represent the set of processors

allocated to) � . Let � � represent the set of free processors and � � represent the number of free processors at time ‘t’ when the
preemption is attempted.

The set of tasks that can be preempted by task)�� is given by�
�
���)��	� �	��
 � � � ��� � ��� � ��

�

 ���
Task) � can be scheduled by preempting one or more tasks in

�
� if and only if

�
�
 � � � � ���� ���������

� �
Let

�)��) �)�� ������')��� be the elements of
�
� . Let � be a permutation of (1,2,3,. . . ,x) such that

�!
� � �
 �"

� � �
�"
� � � ����� �" � � � � �
 �"

� � � (If
�"
� � �

� �"
� � � � � then � � � � � � . If � � � � � � � , then start time of) � start time of) � � � .

If start time of) � = start time of) � � � , then queue time of) � $ queue time of) � � � So,

#%$
� � ! $

�
 ��� ��� �'& � � ���)(� �" � � � $ � �

� '*� � � ��� �+& ���)(� �" � � � 	
 � �
� ',� �

The set of tasks preempted by task) � is given by-
�
�.�) � � � � ! 0/1 $

�
�

If) � is itself a previously suspended task attempting reentry, then it has to get the same set of processors that it was using
before it was suspended. Here we remove the restriction that the number of processors requested by a suspending job should
be at least half of the number of nodes requested by the job that it suspends. Otherwise if a VW job happens to suspend a

9

narrow job, then in the worst case, the narrow job has to wait till the VW job completes to get rescheduled. So the set of tasks
that can be preempted by) � in this case is given by�

�
�.�) � � � �
 � � � � � � ��� � ��� � ������ �

Task) � can be scheduled by preempting one or more tasks in
�
� if and only if

� ��� � � � �
��� � � ��� � � �

4.4 Pseudo code

Sort the list of running jobs in ascending order of suspension threshold
Sort the list of idle jobs in descending order of suspension threshold
for each idle job
do

set the candidate_job_set to be the null set
if (idle job is a suspended job)
then

goto already_suspended
else

available_processors = number of free processors
for each running job
do

if (number of processors requested by the idle job > available_processors)
then

if ((suspension threshold of the idle job >=
SF * suspension threshold of the running job) &&
(number of processors used by the running job <=
2 * number of processors requested by the idle job))

then
available_processors = available_processors +

number of processors used by the running job
candidate_job_set = {candidate_job_set} u {running job}

else
goto next_idle_job

end if
else

goto suspend_jobs_1
end if

done
end for

end if
goto next_idle_job
already_suspended:

set available_processor_set to the set of free processors
for each running job
do

if (set of processors requested by idle job is not a subset of
available_processor_set)

then
if (suspension threshold of the idle job >=

SF * suspension threshold of the running job)
then

if ({set of processors used by the running job} n

10

{set of processors requested by the idle job} is not empty)
then

available_processor_set = {available_processor_set} u
{set of processors used by running job}

candidate_job_set = {candidate_job_set} u {running job}
end if

else
goto next_idle_ job

end if
else

goto suspend_job_2
end if

done
end for

goto next_idle_job
suspend_jobs_1:

sort job(s) in candidate_job_set in descending order of number of processors used
available_processors = number of free processors
for each job in candidate_job_set
do

if (number of processors requested by the idle job > available_processors)
then

suspend the job
available_processors = available_processors +

number of processors used by the suspended job
else

schedule the idle job
goto next_idle_job

end if
done
end for

goto next_idle_job
suspend_jobs_2:

suspend all jobs in the candidate_job_set
schedule the idle job

next idle job:
do nothing

done
end for

4.5 Results

We compare the SS scheme run under various suspension factors with the No-Suspension (NS) scheme with aggressive
backfilling and the IS scheme. From Figures 7, 8, 9 and 10, we can see that the SS scheme provides significant improvement
for the Very-Short (VS) and Short (S) length categories and Wide (W) and Very-Wide (VW) width categories. For example,
for the VS-VW category, slowdown is reduced from 113 for the NS scheme to 7 for SS with SF = 2 for the SDSC trace
(reduced from 34 for the NS scheme to under 3 for SS with SF = 2 for the CTC trace). For VS and S length categories, a
lower SF results in lowered slowdown and turnaround time. This is because a lower SF increases the probability that a job
in these categories will suspend a job in the Long (L) or Very-Long (VL) category. The same is also true for the L length
category, but the effect of change in SF is less pronounced. For the VL length category, there is an opposite trend with
decreasing SF, i.e. the slowdown and turnaround times worsen. This is due to the increasing probability that a Long job will
be suspended by a job in a shorter category as SF decreases. In comparison to the base No-Suspension (NS) scheme, the SS
scheme provides significant benefits for the VS and S categories, a slight improvement for most of the Long categories, but
is slightly worse for the VL categories.

11

Very Short

13.01 34.07

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Short

7.14 36.83

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Long

7.59

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Very Long

3.58

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Figure 7. Average slowdown: SS scheme, CTC trace. Compared to NS, SS provides significant benefit for
the VS, S, W and VW categories, slight improvement for most of L categories, but a slight deterioration for
the VL categories. Compared to IS, SS performs better for all the categories except for the VS categories.

Very Short

3928

0
200
400
600
800

1000
1200

1400
1600

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Short

10835

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

32254

Long

72368

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Very Long

16547395167

0

10000

20000

30000

40000

50000

60000

70000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Figure 8. Average turnaround time: SS scheme, CTC trace. The trends are similar to those with the average
slowdown metric.

12

Very Short

113.337.8

0

2

4

6

8

10

12

14

16

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Short

26.72 192.59

0

2

4

6

8

10

12

14

16

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Long

32.266.93

0

0.5

1

1.5

2

2.5

3

3.5

4

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Very Long

5.53 29.42

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

Width
S

lo
w

d
o

w
n

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Figure 9. Average slowdown: SS scheme, SDSC trace. Compared to NS, SS provides significant benefit
for the VS, S, W and VW categories, slight improvement for most of L categories, but a slight deterioration
for some of the VL categories. Compared to IS, SS performs better for all the categories except for the VS
categories.

Very Short

4344 17449

0

400

800

1200

1600

2000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Short

17329 20097237060

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Long

69479 333035

0

4000

8000

12000

16000

20000

24000

28000

32000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Very Long

135252 1350709309782

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5

SF = 2

SF = 5

No Suspension

IS

Figure 10. Average turnaround time: SS scheme, SDSC trace. The trends are similar to those with the
average slowdown metric.

13

The performance of the IS scheme is very good for the VS category. It is better than the SS scheme for the VS length cat-
egory and worse for the other categories. Although the overall slowdown for IS is considerably less than the No-Suspension
scheme, it is not better than SS. Moreover, with IS the VW and VL categories get significantly worse.

4.6 Tunable Selective Suspension (TSS)

From the graphs of the previous section, it can be observed that the SS scheme significantly improves the average slow-
down and turnaround time of various job categories. But from a practical point of view, the worst case slowdowns and
turnaround times are very important. A scheme that improves the average slowdowns and turnaround times for most of
the categories, but makes the worst case slowdown and turnaround time for the long categories worse, is not an acceptable
scheme. For example, a delay of 1 hour for a 10 minute job (slowdown = 7) is tolerable whereas a slowdown of 7 for a 24
hour job is unacceptable.

In Figure 11, we compare the worst case slowdowns for SF = 2 with the worst case slowdowns of the NS scheme and the
IS scheme for the CTC trace. It can be observed that the worst case slowdowns with the SS scheme are much better than with
the NS scheme for most of the cases. But the worst case slowdowns for some of the long categories are worse than for the NS
scheme. Although the worst case slowdown with SS is generally less than that with NS, the absolute worst case slowdowns
are much higher than the average slowdowns for some of the short categories. For the IS scheme, the worst case slowdowns
for the very short categories are lower, but they are very high for the long jobs, which would be unacceptable. Figure 12
compares the worst case turnaround times for the SS scheme with worst case turnaround times for the NS scheme and the
IS scheme, for the CTC trace. Even though the trends observed here are similar to that with the worst case slowdowns, the
categories where SS is the best with respect to worst case turnaround time are not same as the categories for which SS is the
best with respect to worst case slowdowns. This is because a job with the worst case turnaround time need not be the one
with worst case slowdown. Similar trends can be observed for the SDSC trace from Figures 13 and 14.

4.6.1 Control of variance

We next propose a tunable scheme to improve the worst case slowdown and turnaround time without significant deterioration
of the average slowdown and turnaround time. This is done by controlling the variance in the slowdowns / turnaround times
by associating a limit with each job. Preemption of a job is disabled when its threshold exceeds this limit. This limit is set to
1.5 times the average slowdown of the category that the job belongs to.

The candidate set of tasks that can be preempted by a task) � is given by�
�
�.�) � � � �
 � � � � � � ��� � ��

�

 � � ���
� � !������ ���

���	�
��
'�) 	�E� /�� �) � �

where
���

���	� (category()��)) represents the average slowdown for the job category to which)�� belongs.
If) � is a previously suspended task attempting reentry, then�

�
���)�� � �	��
 � � � ��� � ��� � � � � � ���� � ��� ��� ! � ��� ���

���	�
��
'�) 	��E� /�� �)�� �

All the other conditions remain the same as mentioned in section 4.3
Figure 15 and Figure 16 show the result of this tunable scheme for the CTC trace. It improves the worst case slowdowns

for some long categories (VL W, VL VW, L N) and some short categories (VS Seq, VS N, S Seq) without affecting the
worst case slowdowns of the other categories. It improves the worst case turnaround times for most of the categories without
affecting the worst case turnaround times of the other categories. Figures 17 and 18 show similar trends for the SDSC trace.
This scheme can also be applied to selectively tune the slowdowns / turnaround times for particular categories.

5 Impact of User Estimate Inaccuracies

We have so far assumed that the user estimates of job runtime are perfect. Now, we consider the effect of user estimate
inaccuracy on the proposed schemes. This is desirable from the point of view of modeling an actual system workload. In
this context, we believe that there is a problem that has been ignored by previous studies, when analyzing the effect of over
estimation on scheduling strategies. Abnormally aborted jobs tend to excessively skew the average slowdown of jobs in a
workload. Consider a job requesting a wall-clock limit of 24 hours, that is queued for 1 hour, and then aborts within one
minute due to some fatal exception. The slowdown of this job would be computed to be 60, whereas the average slowdown

14

Very Short

746.15291.51135.48

0

20

40

60

80

100

120

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n
SF = 2

No Suspension

IS

 Short

757.65

0

10

20

30

40

50

60

70

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

No Suspension

IS

Long
96.693.49

0

5

10

15

20

25

30

35

40

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

No Suspension

IS

Very Long

26.6527.58

0
1
2
3
4
5
6
7
8
9

10

Seq Narrow Wide Very Wide

Width
W

o
rs

t
ca

se
 S

lo
w

d
o

w
n

SF = 2

No Suspension

IS

Figure 11. Comparison of the worstcase slowdowns of the SS scheme with the NS and IS schemes for the
CTC trace. SS is much better than NS for most of the categories and is slightly worse for some of the VL
categories. Compared to IS, SS is much better for all the categories except for the VS categories.

Very Short

0

2000

4000

6000

8000

10000

12000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

4437116470

Short

107743

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

174603 175422
635

Long

1121651438900205273112086

0

10000

20000

30000

40000

50000

60000

70000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

Very Long

1711958712283223338173584

0

20000

40000

60000

80000

100000

120000

140000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

Figure 12. Comparison of the worstcase turnaround times of the SS scheme with the NS and IS schemes
for the CTC trace. SS is much better than NS for most of the categories and is slightly worse for some of the
VL categories. Compared to IS, SS is much better for all the categories except for the VS categories.

15

Very Short

647 1056 867

0

50

100

150

200

250

300

350

400

Seq Narrow Wide Very Wide

Width

W
o

rs
tc

as
e

S
lo

w
d

o
w

n
SF = 2

No Suspension

IS

Short

54762216

0

10

20

30

40

50

60

70

80

Seq Narrow Wide Very Wide

Width

W
o

rs
tc

as
e

S
lo

w
d

o
w

n

SF = 2

No Suspension

IS

Long

595 505

0
2
4
6
8

10
12
14
16
18
20
22
24

Seq Narrow Wide Very Wide

Width

W
o

rs
tc

as
e

S
lo

w
d

o
w

n

SF = 2

No Suspension

IS

Very Long

10.11 72.8 86.1 128.7

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width
W

o
rs

tc
as

e
S

lo
w

d
o

w
n

SF = 2

No Suspension

IS

Figure 13. Comparison of the worstcase slowdowns of the SS scheme with the NS and IS schemes for the
SDSC trace. SS is much better than NS for most of the categories and is slightly worse for some of the VL
categories. Compared to IS, SS is much better for all the categories except for some of the VS categories.

Very Short

39588 86754 64874

0

4000

8000

12000

16000

20000

24000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t c

as
e

T
A

T

SF = 2

No Suspension

IS

Short

2326544 4160489

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

Long

56245193974919198354267089

0

20000

40000

60000

80000

100000

120000

140000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

Very Long

4722325 5421950 5566523552731

0

40000

80000

120000

160000

200000

240000

280000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

No Suspension

IS

Figure 14. Comparison of the worstcase turnaround times of the SS scheme with the NS and IS schemes
for the SDSC trace. SS is much better than NS for most of the categories and is slightly worse for some
of the VL categories. Compared to IS, SS is much better for all the categories except for some of the VS
categories.

16

Very Short
135.48 291.51 746.1592.74

0

5

10

15

20

25

30

35

40

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n
SF = 2

Tuned

No Suspension

IS

Very Long

26.6527.58

0
1
2
3
4
5
6
7
8
9

10

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

 Short
757.641.9141.4

0

5

10

15

20

25

30

35

40

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n SF = 2

Tuned

No Suspension

IS

Long

96.693.4931.7235.59

0
1
2

3
4
5
6
7

8
9

10

Seq Narrow Wide Very Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

Figure 15. Worstcase slowdown for the TSS scheme: CTC trace.

Very Short

4437116470

0

2000

4000

6000

8000

10000

12000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Short

1754226147603107743

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Long

1121651438900205273112806

0

10000

20000

30000

40000

50000

60000

70000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Very Long

1711958712283223338173584

0

20000

40000

60000

80000

100000

120000

140000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Figure 16. Worstcase turnaround times for the TSS scheme: CTC trace.

17

Very Short

8671056647

0

50

100

150

200

250

300

350

400

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n
SF = 2

Tuned

No Suspension

IS

Very Long

128.786.172.810.1

0

1

2

3

4

5

6

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

 Short

2216 5476

0

10

20

30

40

50

60

70

80

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

Very Short

505595

0
2
4
6
8

10
12
14
16
18
20
22
24

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 S
lo

w
d

o
w

n

SF = 2

Tuned

No Suspension

IS

Figure 17. Worstcase slowdown for the TSS scheme: SDSC trace.

Very Short

8675439588 64874

0

4000

8000

12000

16000

20000

24000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Long

56245193974919198354267089

0

20000

40000

60000

80000

100000

120000

140000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Short

41604892326544

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Very Long

552731 4722325 5421950 5566523

0

40000

80000

120000

160000

200000

240000

280000

Seq Narrow Wide Very
Wide

Width

W
o

rs
t

ca
se

 T
A

T

SF = 2

Tuned

No Suspension

IS

Figure 18. Worstcase turnaround times for the TSS scheme: SDSC trace.

18

of normally completing long jobs is typically under 2. If even 5% of the jobs have a high slowdown of 60, while 95% of
the normally completing jobs have a slowdown of 2, the average slowdown over all jobs would be around 5. Now consider
a scheme such as the speculative backfilling strategy evaluated in [28]. With this scheme, a job is given a free timeslot to
execute in, even if that slot is considerably smaller than the requested wall-clock limit. Aborting jobs will quickly terminate,
and since they did not have to be queued till an adequately long window was available, their slowdown would decrease
dramatically with the speculative backfilling scheme. As a result, the average slowdown of the entire trace would now be
close to 2, assuming that the slowdown of the normally completing jobs does not change significantly. A comparison of the
average slowdowns would seem to indicate that the speculative backfill scheme results in a significant improvement in job
slowdown from 5 to 2. However, under the above scenario, the change is only due to the small fraction of aborted jobs, and
not due to any benefits to the normal jobs. In order to avoid this problem, we group the jobs into two different estimation
categories:

+ Jobs that are well-estimated (the estimated time is not more than twice the actual run time of that job) and
+ Jobs that are poorly-estimated (the estimated run time is more than twice the actual run time).

Within each group, the jobs are further classified into 16 categories based on their actual run time and the number of
processors requested.

It can be observed from Figures 19 and 21 that the Selective Suspension scheme improves the slowdowns for most of the
categories without adversely affecting the other categories. The slowdowns for the short and wide categories are quite high
compared to the other categories and this is mainly because of the over estimation. Since the suspension threshold used by
the SS scheme is xfactor, it favors the short jobs. But if a short job was badly estimated, it would be treated as a long job and
its priority would increase only gradually. So, it will not be able to suspend running jobs easily and will end up with a high
slowdown. This does not happen with IS because of the 10 minute time quantum for each arriving job irrespective of the
estimated run time and therefore the slowdowns for the very short category (whose length is less than or equal to 10 minutes)
is better in IS than other schemes. However, for the other categories, SS performs much better than IS.

Figures 20 and 22 compare the average turnaround times for the SS scheme with that of the NS and IS schemes for the
CTC and SDSC traces respectively. The improvement in performance for the short and wide categories is much less when
compared to the improvement achieved with the accurate user estimate case. The reasoning provided above for the increase
in slowdowns for the short and wide categories also holds for this case. The seemingly long jobs (badly estimated short
jobs) are unable to suspend running jobs easily and have to wait in the queue for a longer time, thus ending up with a high
turnaround time.

From Figures 23, 24, 27 and 28, it is evident that the higher slowdowns for the VS categories with SS is due to the badly
estimated jobs.

Figures 25, 26, 29 and 30 show that the reduction in the percentage improvement of the average turnaround times for the
short and wide categories in SS is due to the badly estimated jobs. It can also be observed that, for the well estimated jobs,
SS is better or comparable to IS for the VS categories and SS outperforms IS in all other categories.

5.1 Modeling of Job Suspension Overhead

We have so far assumed no overhead for preemption of jobs. In this section, we present simulation results that incorporate
overheads for job suspension. Since the job traces did not have information about job memory requirements, we considered
the memory requirement of jobs to be random and uniformly distributed between 100MB and 1GB. The overhead for sus-
pension is calculated as the time taken to write the main memory used by the job to the disk. The memory transfer rate that
we considered is based on the following scenario: with a commodity local disk for every node, with each node being a quad,
the transfer rate per processor was assumed to be 2 MBps (corresponding to a disk bandwidth of 8 MBps).

Figures 31 and 32 compare respectively the slowdowns and turnaround times of the proposed tunable scheme with NS
and IS in the presence of overhead for job suspension/restart for the CTC trace. Figures 33 and 34 compare respectively
the slowdowns and turnaround times of the proposed tunable scheme with NS and IS in the presence of overhead for job
suspension/restart for the SDSC trace. It can be observed that overhead does not significantly affect the performance of the
SS Scheme.

6 Load Variation

We have so far seen the performance of the Selective Suspension scheme under normal load. In this section, we present the
performance of the SS scheme under different load conditions starting from the normal load (original trace) and increasing

19

Very Short

53.921.7

0
2
4
6
8

10
12
14
16
18
20

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

7.2 37.66

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

5.653.22

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

4.57

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 19. Average slowdown: Inaccurate estimates of runtime; CTC trace.

Very Short

5101

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

45663

0

2000

4000

6000

8000

10000

12000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

10834623580

0

5000

10000

15000

20000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

34239588868

0

10000

20000

30000

40000

50000

60000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 20. Average turnaround time: Inaccurate estimates of runtime; CTC trace.

20

Very Short

12199

0
5

10
15
20
25
30
35
40
45
50
55
60
65

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

178.47

0

4

8

12

16

20

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

97.78.26

0

1

2

3

4

5

6

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

39.055.44

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 21. Average slowdown: Inaccurate estimates of runtime; SDSC trace.

Very Short

11079 18935

0

1000

2000

3000

4000

5000

6000

7000

8000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

218087

0

4000

8000

12000

16000

20000

24000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

70138496790

0

10000

20000

30000

40000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

128842 288427 1618960

0

20000

40000

60000

80000

100000

120000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 22. Average turnaround time: Inaccurate estimates of runtime; SDSC trace.

21

Very Short

16.94

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

7.23 55.18

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

4.853.42

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

2.97 4.77

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 23. Average slowdown of well-estimated jobs: CTC trace.

Very Short

0
2
4
6
8

10
12
14
16
18
20

Seq Narrow Wide Very
Wide

W idt h

S
lo

w
d

o
w

n SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

23.43 21.85 59.69

 Short

0

1

2

3

4

5

6

Seq Narrow Wide Very
Wide

W id t h

S
lo

w
d

o
w

n SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

6.33 6.61

Very Long

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

W idt h

S
lo

w
d

o
w

n SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

W idt h

S
lo

w
do

w
n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

6.35

Figure 24. Average slowdown of badly-estimated jobs: CTC trace.

22

Very Short

4472

0

200

400

600

800

1000

1200
1400

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

68464

0

2000

4000

6000

8000

10000

12000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

130543

0

5000

10000

15000

20000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

36956190297

0

10000

20000

30000

40000

50000

60000

70000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 25. Average turnaround time of well-estimated jobs: CTC trace.

Very Short

5200

0

1000

2000

3000

4000

5000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

5928745825

0

5000

10000

15000

20000

25000

30000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

0

5000

10000
15000
20000
25000

30000

35000

40000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 26. Average turnaround time of badly-estimated jobs: CTC trace.

23

Very Short

11.7 52.5

0

1

2

3

4

5

6

7

8

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

20 23 106

0

2

4

6

8

10

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

0

0.5

1

1.5

2

2.5

3

3.5

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

39.055.44

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 27. Average slowdown of well-estimated jobs: SDSC trace.

Very Short

111 123

0

10

20

30

40

50

60

70

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

227.4

0

2

4

6

8

10

12

14

16

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

155.613.5

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 28. Average slowdown of badly-estimated jobs: SDSC trace.

24

Very Short

21175

0

1000

2000

3000

4000

5000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e
SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

104779

0

4000

8000

12000

16000

20000

24000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

3739325059049066

0

5000

10000

15000

20000

25000

30000

35000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

1621780288427129682

0

20000

40000

60000

80000

100000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 29. Average turnaround time of well-estimated jobs: SDSC trace.

Very Short

12478 18872

0

1000

2000

3000

4000

5000

6000

7000

8000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

 Short

294928

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Long

969299144916

0

5000

10000

15000

20000

25000

30000

35000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Very Long

0

5000

10000

15000

20000

25000

30000

35000

40000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 1.5 Tuned

SF = 2 Tuned

SF = 5 Tuned

No Suspension

IS

Figure 30. Average turnaround time of badly-estimated jobs: SDSC trace.

25

Very Short

21.7 53.9

0

2

4

6

8

10

12

14

16

18

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

 Short

7.2 37.66

0

1

2

3

4

5

6

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

Long

5.653.22

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

Very Long

4.57

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = OH

No Suspension

IS

Figure 31. Average slowdown with modeling of overhead for suspension/restart: CTC trace.

Very Short

5101

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

 Short

45663

0

2000

4000

6000

8000

10000

12000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

Long

10834623580

0

5000

10000

15000

20000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

Very Long

36958190297

0

10000

20000

30000

40000

50000

60000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = OH

No Suspension

IS

Figure 32. Average turnaround time with modeling of overhead for suspension/restart: CTC trace.

26

Very Short

121.38

0

10

20

30

40

50

60

70

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

 Short

17.2 178.4

0

2

4

6

8

10

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

Long

97.78.26

0

0.5

1

1.5

2

2.5

3

3.5

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = 2 OH

No Suspension

IS

Very Long

39.055.44

0

0.5

1

1.5

2

2.5

3

Seq Narrow Wide Very
Wide

Width

S
lo

w
d

o
w

n SF = 2

SF = OH

No Suspension

IS

Figure 33. Average slowdown with modeling of overhead for suspension/restart: SDSC trace.

Very Short

18935

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

 Short

218087

0

4000

8000

12000

16000

20000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

Long

70138496790

0

5000

10000

15000

20000

25000

30000

35000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = 2 OH

No Suspension

IS

Very Long

1618960288427128842

0

20000

40000

60000

80000

Seq Narrow Wide Very
Wide

Width

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2

SF = OH

No Suspension

IS

Figure 34. Average turnaround time with modeling of overhead for suspension/restart: SDSC trace.

27

load until the system reaches saturation. The different loads correspond to modification of the traces by dividing the arrival
times of the jobs by suitable constants, keeping their run time the same as in the original trace. For example, the job trace for
a load factor of 1.1 is obtained by dividing the arrival times of the jobs in the original trace by 1.1.

For simplicity, we have reduced the number of job categories from sixteen to four for the load variation studies: two
categories based on their run time - Short (S) and Long (L) and two categories based on the number of processors requested
- Narrow (N) and Wide (W). The criteria used for job classifications is shown in Table 6. The distribution of jobs in the CTC
and SDSC traces, corresponding to the four categories is given in Table 7 and Table 8 respectively.

8 Processors � 8 Processors

1Hr SN SW
� 1Hr LN LW

Table 6. Job categorization criteria for load variation studies

8 Processors � 8 Processors

1Hr 44% 13%
� 1Hr 30% 13%

Table 7. Job distribution by category for load variation studies - CTC trace

8 Processors � 8 Processors

1Hr 47% 22%
� 1Hr 21% 10%

Table 8. Job distribution by category for load variation studies - SDSC trace

Figures 35 and 36 show the overall system utilization for different schemes under different load conditions for the CTC
and SDSC traces. It can be observed that the SS scheme is able to achieve a better utilization than the NS scheme at higher
loads whereas the overall system utilization is very low under the IS scheme. Also, there is no significant increase in the
overall system utilization (for both the SS and NS schemes) when the load factor is increased beyond 1.6 (for CTC) and 1.3
(for SDSC) which indicates that the system reaches saturation at a load factor of 1.6 (for CTC) and 1.3 (for SDSC). We report
the performance of the SS scheme for various load factors between 1.0 (normal) and 1.6 for the CTC trace and between 1.0
and 1.3 for the SDSC trace.

Figures 37, 38, 39 and 40 compare the performance of the SS scheme with the NS and IS schemes for different job
categories under different load conditions for CTC and SDSC traces. It can be observed that the improvements obtained
by the SS scheme are more pronounced under high load. The trends with respect to different categories under higher loads
is similar to that observed under the normal load. It provides significant benefit to the short jobs without affecting the
performance of long jobs. The IS scheme is better than the SS scheme only for the SN jobs in terms of average turnaround
time, whereas it is better than SS for both SN and SW jobs in terms of average slowdown. It implies that the IS scheme
improves the performance of only the relatively shorter jobs in SW category by adversely affecting the performance of the
relatively longer jobs. Also, the performance of the IS scheme is much worse for the long jobs, which is very undesirable.

Figures 41 and 42 compare respectively the average slowdowns and the average turnaround times of the jobs in the
CTC trace against the overall system utilization for various schemes. Figure 43 and 44 compare respectively the average
slowdowns and the average turnaround times of the jobs in the SDSC trace against the overall system utilization for various
schemes. It is evident that the SS scheme is much better than both the IS and NS schemes. Even when the system is highly
utilized, the SS scheme is able to provide much better response times for all categories of jobs. The IS scheme is not able to
achieve high system utilization.

28

 Load Vs Utilization

0

10

20

30

40

50

60

70

80

90

1 1.2 1.4 1.6 1.8 2

Load

U
ti

liz
at

io
n

SF = 2 Tuned

No Suspension

IS

Figure 35. Comparison of overall system utilization of the SS scheme with the NS and IS schemes under
different load conditions for the CTC trace. The overall system utilization with the SS scheme is better than
or comparable to the NS scheme. The performance of IS is much worse in terms of overall system utilization.

 Load Vs Utilization

0

10

20

30

40

50

60

70

80

90

1 1.1 1.2 1.3 1.4

Load

U
ti

liz
at

io
n

SF = 2 Tuned

No Suspension

IS

Figure 36. System utilization: SDSC trace.

29

Short Narrow

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Short Wide

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Narrow

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Wide

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Figure 37. Comparison of the average slowdowns of the SS scheme with the IS and NS schemes un-
der different load conditions for the CTC trace. The improvements achieved by the SS scheme are more
pronounced under high load.

Short Narrow

0

500

1000

1500

2000

2500

3000

3500

4000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Short Wide

0

5000

10000

15000

20000

25000

30000

35000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Narrow

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Wide

0

50000

100000

150000

200000

250000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Figure 38. Average turnaround time: varying load; CTC trace.

30

Short Narrow

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Short Wide

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Narrow

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Wide

0

10

20

30

40

50

60

0 0.5 1 1.5 2

Load

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Figure 39. Average slowdown: varying load; SDSC trace.

Short Narrow

0

500

1000

1500

2000

2500

3000

3500

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Short Wide

0

20000

40000

60000

80000

100000

120000

140000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Narrow

0

20000

40000

60000

80000

100000

120000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Wide

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

0 0.5 1 1.5 2

Load

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Figure 40. Average turnaround time: varying load; SDSC trace.

31

Short Narrow

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Short Wide

0

20

40

60

80

100

120

140

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Narrow

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Wide

0

2

4

6

8

10

12

14

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Figure 41. Average slowdown versus system utilization: CTC trace.

Short Narrow

0

500

1000

1500

2000

2500

3000

3500

4000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Short Wide

0

5000

10000

15000

20000

25000

30000

35000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Narrow

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Wide

0

50000

100000

150000

200000

250000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Figure 42. Average turnaround time versus system utilization: CTC trace.

32

Short Narrow

0

5

10

15

20

25

30

35

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Short Wide

0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Narrow

0

1

2

3

4

5

6

7

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Long Wide

0

10

20

30

40

50

60

0 20 40 60 80 100

Utilization

S
lo

w
d

o
w

n SF = 2 Tuned

No Suspension

IS

Figure 43. Average slowdown versus system utilization: SDSC trace.

Short Narrow

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Short Wide

0

20000

40000

60000

80000

100000

120000

140000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Narrow

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Long Wide

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

0 20 40 60 80 100

Utilization

T
u

rn
ar

o
u

n
d

 T
im

e

SF = 2 Tuned

No Suspension

IS

Figure 44. Average turnaround time versus system utilization: SDSC trace.

33

7 Conclusions

In this paper, we have explored the issue of preemptive scheduling of parallel jobs, using job traces from two super-
computer centers. We have proposed a tunable, selective suspension scheme and demonstrated that it provides significant
improvement in the average slowdown and the worst case slowdowns of most job categories. It was also shown to provide
better slowdown for most job categories over a previously proposed Immediate Service scheme. We also modeled the ef-
fect of overheads for job suspension, showing that even under stringent assumptions about available bandwidth to disk, the
proposed scheme provides significant benefits over non-preemptive scheduling and the Immediate Service strategy. We also
evaluated the proposed schemes in the presence of inaccurate estimate of job run times and showed that the proposed scheme
produced good results. Further, we showed that the Selective Suspension strategy provides greater benefits under high system
loads compared to the other schemes.

References

[1] K. Aida. Effect of Job Size Characteristics on Job Scheduling Performance. In Workshop on Job Scheduling Strategies
for Parallel Processing, pages 1–17, 2000.

[2] S. V. Anastasiadis and K. C. Sevcik. Parallel Application Scheduling on Networks of Workstations. Journal of Parallel
and Distributed Computing, 43(2):109–124, 1997.

[3] O. Arndt, B. Freisleben, T. Kielmann, and F. Thilo. A Comparative Study of Online Scheduling Algorithms for Net-
works of Workstations. Cluster Computing, 3(2):95–112, 2000.

[4] S. H. Chiang, R. K. Mansharamani, and M. K. Vernon. Use of Application Characteristics and Limited Preemption for
Run-to-Completion Parallel Processor Scheduling Policies. In ACM SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, pages 33–44, 1994.

[5] S. H. Chiang and M. K. Vernon. Production Job Scheduling for Parallel Shared Memory Systems. In Proceedings of
International Parallel and Distributed Processing Symposium, 2002.

[6] W. Cirne. When the Herd is Smart: The Emergent Behavior of SA. In IEEE Transactions on Parallel and Distributed
Systems, 2002.

[7] W. Cirne and F. Berman. Adaptive Selection of Partition Size for Supercomputer Requests. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 187–208, 2000.

[8] B. DasGupta and M. A. Palis. Online real-time preemptive scheduling of jobs with deadlines. In APPROX, pages
96–107, 2000.

[9] X. Deng and P. Dymond. On multiprocessor system scheduling. In Proceedings of the eighth annual ACM symposium
on Parallel algorithms and architectures, pages 82–88. ACM Press, 1996.

[10] X. Deng, N. Gu, T. Brecht, and K. Lu. Preemptive Scheduling of Parallel Jobs on Multiprocessors. In SODA: ACM-
SIAM Symposium on Discrete Algorithms, 1996.

[11] L. Epstein. Optimal preemptive scheduling on uniform processors with non-decreasing speed ratios. Lecture Notes in
Computer Science, 2010:230–248, 2001.

[12] D. G. Feitelson. Logs of real parallel workloads from production systems. http://www.cs.huji.
ac.il/labs/parallel/workload/logs.html.

[13] D. G. Feitelson. Analyzing the Root Causes of Performance Evaluation Results. Technical report, Leibniz Center,
Hebrew University, 2002.

[14] D. G. Feitelson and M. A. Jette. Improved utilization and responsiveness with gang scheduling. In Workshop on Job
Scheduling Strategies for Parallel Processing, pages 238–261. Springer-Verlag, 1997.

[15] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong. Theory and practice in parallel job
scheduling. In Workshop on Job Scheduling Strategies for Parallel Processing, pages 1–34. Springer-Verlag, 1997.

34

[16] D. Jackson, Q. Snell, and M. J. Clement. Core Algorithms of the Maui Scheduler. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 87–102, 2001.

[17] J. P. Jones and B. Nitzberg. Scheduling for Parallel Supercomputing: A Historical Perspective of Achievable Utilization.
In Workshop on Job Scheduling Strategies for Parallel Processing, pages 1–16, 1999.

[18] W. A. Ward Jr., C. L. Mahood, and J. E. West. Scheduling Jobs on Parallel Systems Using a Relaxed Backfill Strategy.
In Workshop on Job Scheduling Strategies for Parallel Processing, 2002.

[19] P. J. Keleher, D. Zotkin, and D. Perkovic. Attacking the Bottlenecks of Backfilling Schedulers. Cluster Computing,
3(4):245–254, 2000.

[20] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour. On the Design and Evaluation of Job Scheduling Algorithms. In
Workshop on Job Scheduling Strategies for Parallel Processing, pages 17–42, 1999.

[21] B. G. Lawson and E. Smirni. Multiple-queue Backfilling Scheduling with Priorities and Reservations for Parallel
Systems. In Workshop on Job Scheduling Strategies for Parallel Processing, 2002.

[22] B. G. Lawson, E. Smirni, and D. Puiu. Self-adapting Backfilling Scheduling for Parallel Systems. In Proceedings of
the International Conference on Parallel Processing, 2002.

[23] L. T. Leutenneger and M. K. Vernon. The Performance of Multiprogrammed Multiprocessor Scheduling Policies. In
ACM SIGMETRICS Conference on Measurement and Modelling of Computer Systems, pages 226–236, May 1990.

[24] D. Lifka. The ANL/IBM SP Scheduling System. In Workshop on Job Scheduling Strategies for Parallel Processing,
pages 295–303, 1995.

[25] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation policy for multiprogrammed shared-memory
multiprocessors. ACM Transactions on Computer Systems, 11(2):146–178, 1993.

[26] A. W. Mu’alem and D. G. Feitelson. Utilization, predictability, workloads, and user runtime estimates in scheduling the
ibm sp2 with backfilling. IEEE Transactions on Parallel and Distributed Systems, 12(6):529–543, 2001.

[27] E. W. Parsons and K. C. Sevcik. Implementing Multiprocessor Scheduling Disciplines. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 166–192. Springer Verlag, 1997. Lecture
Notes in Computer Science vol. 1291.

[28] D. Perkovic and P. J. Keleher. Randomization, speculation, and adaptation in batch schedulers. In Proceedings of the
2000 ACM/IEEE conference on Supercomputing (CDROM), page 7. IEEE Computer Society, 2000.

[29] G. Sabin, R. Kettimuthu, A. Rajan, and P. Sadayappan. Scheduling of Parallel Jobs in a Heterogeneous Multi-Site
Environment. In Workshop on Job Scheduling Strategies for Parallel Processing, 2003.

[30] U. Schwiegelshohn and R. Yahyapour. Fairness in parallel job scheduling. Journal of Scheduling, 3(5):297–320, 2000.

[31] K. C. Sevcik. Application Scheduling and Processor Allocation in Multiprogrammed Parallel Processing Systems.
Performance Evaluation, 19(2-3):107–140, 1994.

[32] J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - LoadLeveler API Project. In Workshop on Job Scheduling
Strategies for Parallel Processing, pages 41–47, 1996.

[33] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Characterization of Backfilling Strategies for Parallel
Job Scheduling. In Proceedings of the ICPP-2002 Workshops, pages 514–519, 2002.

[34] S. Srinivasan, R. Kettimuthu, V. Subramani, and P. Sadayappan. Selective Reservation Strategies for Backfill Job
Scheduling. In Workshop on Job Scheduling Strategies for Parallel Processing, 2002.

[35] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur, and P. Sadayappan. Effective Selection of Partition Sizes
for Moldable Scheduling of Parallel Jobs. In Proceedings of the 9th International Conference on High Performance
Computing, 2002.

35

[36] A. Streit. On job scheduling for hpc-clusters and the dynp scheduler. In Proceedings of the 8th International Conference
on High Performance Computing, pages 58–67. Springer-Verlag, 2001.

[37] V. Subramani, R. Kettimuthu, S. Srinivasan, J. Johnston, and P. Sadayappan. Selective Buddy Allocation for Scheduling
Parallel Jobs on Clusters. In Proceedings of the IEEE International Conference on Cluster Computing, 2002.

[38] V. Subramani, R. Kettimuthu, S. Srinivasan, and P. Sadayappan. Distributed Job Scheduling on Computational Grids
using Multiple Simultaneous Requests. In Proceedings of the 11th IEEE International Symposium on High Performance
Distributed Computing, pages 359–366, 2002.

[39] D. Talby and D. G. Feitelson. Supporting Priorities and Improving Utilization of the IBM SP Scheduler Using Slack-
Based Backfilling. In Proceedings of the 13th International Parallel Processing Symposium, pages 513–517, 1999.

[40] J. Zahorjan and C. McCann. Processor Scheduling in Shared Memory Multiprocessors. In ACM SIGMETRICS Confer-
ence on Measurement and Modelling of Computer Systems, pages 214–225, May 1990.

[41] D. Zotkin and P. Keleher. Job-length Estimation and Performance in Backfilling Schedulers. In Proceedings of the 8th
High Performance Distributed Computing Conference, pages 236–243, 1999.

36

